Shellable complexes from multicomplexes
Journal of Algebraic Combinatorics, Tome 32 (2010) no. 1, pp. 99-112.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Suppose a group $G$ acts properly on a simplicial complex $\Gamma $. Let $l$ be the number of $G$-invariant vertices, and $p _{1}, p _{2},\cdots , p _{ m }$ be the sizes of the $G$-orbits having size greater than 1. Then $\Gamma $ must be a subcomplex of $\varLambda = \varDelta ^{ l -1}$* P$\varDelta ^{ p $_1 -$1} * $frac14 * P$\varDelta ^{ p $_ m -$1} \varLambda=\varDelta $^l-1*$\partial \varDelta $^p_1-1 *$\cdots*\partial \varDelta $^p_m-1. A result of Novik gives necessary conditions on the face numbers of Cohen-Macaulay subcomplexes of $\Lambda $. We show that these conditions are also sufficient, and thus provide a complete characterization of the face numbers of these complexes.
Keywords: keywords simplicial complex, $f$-vector, multicomplex
@article{JAC_2010__32_1_a2,
     author = {Browder, Jonathan},
     title = {Shellable complexes from multicomplexes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {99--112},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2010__32_1_a2/}
}
TY  - JOUR
AU  - Browder, Jonathan
TI  - Shellable complexes from multicomplexes
JO  - Journal of Algebraic Combinatorics
PY  - 2010
SP  - 99
EP  - 112
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2010__32_1_a2/
LA  - en
ID  - JAC_2010__32_1_a2
ER  - 
%0 Journal Article
%A Browder, Jonathan
%T Shellable complexes from multicomplexes
%J Journal of Algebraic Combinatorics
%D 2010
%P 99-112
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2010__32_1_a2/
%G en
%F JAC_2010__32_1_a2
Browder, Jonathan. Shellable complexes from multicomplexes. Journal of Algebraic Combinatorics, Tome 32 (2010) no. 1, pp. 99-112. http://geodesic.mathdoc.fr/item/JAC_2010__32_1_a2/