Completely symmetric configurations for $\sigma $-games on grid graphs
Journal of Algebraic Combinatorics, Tome 31 (2010) no. 4, pp. 533-545.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The paper deals with $\sigma $-games on grid graphs (in dimension 2 and more) and conditions under which any completely symmetric configuration of lit vertices can be reached - in particular the completely lit configuration - when starting with the all-unlit configuration. The answer is complete in dimension 2. In dimension $\geq 3$, the answer is complete for the $\sigma ^{+}$-game, and for the $\sigma ^{ - }$-game if at least one of the sizes is even. The case $\sigma ^{ - }$, dimension $\geq 3$ and all sizes odd remains open.
Keywords: keywords sigma-games, chebychev polynomials, commutative algebra
@article{JAC_2010__31_4_a2,
     author = {Florence, Mathieu and Meunier, Fr\'ed\'eric},
     title = {Completely symmetric configurations for $\sigma $-games on grid graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {533--545},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2010__31_4_a2/}
}
TY  - JOUR
AU  - Florence, Mathieu
AU  - Meunier, Frédéric
TI  - Completely symmetric configurations for $\sigma $-games on grid graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2010
SP  - 533
EP  - 545
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2010__31_4_a2/
LA  - en
ID  - JAC_2010__31_4_a2
ER  - 
%0 Journal Article
%A Florence, Mathieu
%A Meunier, Frédéric
%T Completely symmetric configurations for $\sigma $-games on grid graphs
%J Journal of Algebraic Combinatorics
%D 2010
%P 533-545
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2010__31_4_a2/
%G en
%F JAC_2010__31_4_a2
Florence, Mathieu; Meunier, Frédéric. Completely symmetric configurations for $\sigma $-games on grid graphs. Journal of Algebraic Combinatorics, Tome 31 (2010) no. 4, pp. 533-545. http://geodesic.mathdoc.fr/item/JAC_2010__31_4_a2/