($q,t$)-analogues and $GL_{n}({\mathbb{F}}_{q})$
Journal of Algebraic Combinatorics, Tome 31 (2010) no. 3, pp. 411-454.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We start with a $( q, t)$-generalization of a binomial coefficient. It can be viewed as a polynomial in $t$ that depends upon an integer $q$, with combinatorial interpretations when $q$ is a positive integer, and algebraic interpretations when $q$ is the order of a finite field. These $( q, t)$-binomial coefficients and their interpretations generalize further in two directions, one relating to column-strict tableaux and Macdonald's "$7 ^{ th }$ variation" of Schur functions, the other relating to permutation statistics and Hilbert series from the invariant theory of $GL _{ n}(\mathbb F _{ q})$ GL_n(mathbbF_q) .
Keywords: keywords $q$-binomial, $q$-multinomial, finite field, Gaussian coefficient, invariant theory, Coxeter complex, Tits building, Steinberg character, principal specialization
@article{JAC_2010__31_3_a1,
     author = {Reiner, Victor and Stanton, Dennis},
     title = {($q,t$)-analogues and $GL_{n}({\mathbb{F}}_{q})$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {411--454},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2010__31_3_a1/}
}
TY  - JOUR
AU  - Reiner, Victor
AU  - Stanton, Dennis
TI  - ($q,t$)-analogues and $GL_{n}({\mathbb{F}}_{q})$
JO  - Journal of Algebraic Combinatorics
PY  - 2010
SP  - 411
EP  - 454
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2010__31_3_a1/
LA  - en
ID  - JAC_2010__31_3_a1
ER  - 
%0 Journal Article
%A Reiner, Victor
%A Stanton, Dennis
%T ($q,t$)-analogues and $GL_{n}({\mathbb{F}}_{q})$
%J Journal of Algebraic Combinatorics
%D 2010
%P 411-454
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2010__31_3_a1/
%G en
%F JAC_2010__31_3_a1
Reiner, Victor; Stanton, Dennis. ($q,t$)-analogues and $GL_{n}({\mathbb{F}}_{q})$. Journal of Algebraic Combinatorics, Tome 31 (2010) no. 3, pp. 411-454. http://geodesic.mathdoc.fr/item/JAC_2010__31_3_a1/