An algorithmic Littlewood-Richardson rule
Journal of Algebraic Combinatorics, Tome 31 (2010) no. 2, pp. 253-266.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce a Littlewood-Richardson rule based on an algorithmic deformation of skew Young diagrams and present a bijection with the classical rule. The result is a direct combinatorial interpretation and proof of the geometric rule presented by Coskun ( 2000). We also present a corollary regarding the Specht modules of the intermediate diagrams.
Keywords: keywords Littlewood-Richardson rule, Specht modules, Grassmannian
@article{JAC_2010__31_2_a2,
     author = {Liu, Ricky Ini},
     title = {An algorithmic {Littlewood-Richardson} rule},
     journal = {Journal of Algebraic Combinatorics},
     pages = {253--266},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2010__31_2_a2/}
}
TY  - JOUR
AU  - Liu, Ricky Ini
TI  - An algorithmic Littlewood-Richardson rule
JO  - Journal of Algebraic Combinatorics
PY  - 2010
SP  - 253
EP  - 266
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2010__31_2_a2/
LA  - en
ID  - JAC_2010__31_2_a2
ER  - 
%0 Journal Article
%A Liu, Ricky Ini
%T An algorithmic Littlewood-Richardson rule
%J Journal of Algebraic Combinatorics
%D 2010
%P 253-266
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2010__31_2_a2/
%G en
%F JAC_2010__31_2_a2
Liu, Ricky Ini. An algorithmic Littlewood-Richardson rule. Journal of Algebraic Combinatorics, Tome 31 (2010) no. 2, pp. 253-266. http://geodesic.mathdoc.fr/item/JAC_2010__31_2_a2/