Černý's conjecture and group representation theory
Journal of Algebraic Combinatorics, Tome 31 (2010) no. 1, pp. 83-109.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let us say that a Cayley graph $\Gamma $of a group $G$ of order $n$ is a Černý Cayley graph if every synchronizing automaton containing $\Gamma $as a subgraph with the same vertex set admits a synchronizing word of length at most $( n - 1) ^{2}$. In this paper we use the representation theory of groups over the rational numbers to obtain a number of new infinite families of Černý Cayley graphs.
Keywords: keywords černý's conjecture, synchronizing automata, group representation theory
@article{JAC_2010__31_1_a4,
     author = {Steinberg, Benjamin},
     title = {\v{C}ern\'y's conjecture and group representation theory},
     journal = {Journal of Algebraic Combinatorics},
     pages = {83--109},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a4/}
}
TY  - JOUR
AU  - Steinberg, Benjamin
TI  - Černý's conjecture and group representation theory
JO  - Journal of Algebraic Combinatorics
PY  - 2010
SP  - 83
EP  - 109
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a4/
LA  - en
ID  - JAC_2010__31_1_a4
ER  - 
%0 Journal Article
%A Steinberg, Benjamin
%T Černý's conjecture and group representation theory
%J Journal of Algebraic Combinatorics
%D 2010
%P 83-109
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a4/
%G en
%F JAC_2010__31_1_a4
Steinberg, Benjamin. Černý's conjecture and group representation theory. Journal of Algebraic Combinatorics, Tome 31 (2010) no. 1, pp. 83-109. http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a4/