Lefschetz properties and basic constructions on simplicial spheres
Journal of Algebraic Combinatorics, Tome 31 (2010) no. 1, pp. 111-129.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The well known $g$-conjecture for homology spheres follows from the stronger conjecture that the face ring over the reals of a homology sphere, modulo a linear system of parameters, admits the strong-Lefschetz property. We prove that the strong-Lefschetz property is preserved under the following constructions on homology spheres: join, connected sum, and stellar subdivisions. The last construction is a step towards proving the $g$-conjecture for piecewise-linear spheres.
Keywords: keywords face ring, strong-Lefschetz property, homology sphere
@article{JAC_2010__31_1_a3,
     author = {Babson, Eric and Nevo, Eran},
     title = {Lefschetz properties and basic constructions on simplicial spheres},
     journal = {Journal of Algebraic Combinatorics},
     pages = {111--129},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a3/}
}
TY  - JOUR
AU  - Babson, Eric
AU  - Nevo, Eran
TI  - Lefschetz properties and basic constructions on simplicial spheres
JO  - Journal of Algebraic Combinatorics
PY  - 2010
SP  - 111
EP  - 129
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a3/
LA  - en
ID  - JAC_2010__31_1_a3
ER  - 
%0 Journal Article
%A Babson, Eric
%A Nevo, Eran
%T Lefschetz properties and basic constructions on simplicial spheres
%J Journal of Algebraic Combinatorics
%D 2010
%P 111-129
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a3/
%G en
%F JAC_2010__31_1_a3
Babson, Eric; Nevo, Eran. Lefschetz properties and basic constructions on simplicial spheres. Journal of Algebraic Combinatorics, Tome 31 (2010) no. 1, pp. 111-129. http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a3/