Infinite primitive directed graphs
Journal of Algebraic Combinatorics, Tome 31 (2010) no. 1, pp. 131-141.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A group $G$ of permutations of a set $\Omega $is $primitive$ if it acts transitively on $\Omega $, and the only $G$-invariant equivalence relations on $\Omega $are the trivial and universal relations. A digraph $\Gamma $is $primitive$ if its automorphism group acts primitively on its vertex set, and is $infinite$ if its vertex set is infinite. It has connectivity one if it is connected and there exists a vertex $\alpha $ of $\Gamma $, such that the induced digraph $\Gamma \setminus { \alpha }$ is not connected. If $\Gamma $has connectivity one, a $lobe$ of $\Gamma $is a connected subgraph that is maximal subject to the condition that it does not have connectivity one. Primitive graphs (and thus digraphs) with connectivity one are necessarily infinite.
Keywords: keywords primitive, graph, digraph, permutation, group, orbital graph, orbital digraph, block-cut-vertex tree
@article{JAC_2010__31_1_a2,
     author = {Smith, Simon M.},
     title = {Infinite primitive directed graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {131--141},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a2/}
}
TY  - JOUR
AU  - Smith, Simon M.
TI  - Infinite primitive directed graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2010
SP  - 131
EP  - 141
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a2/
LA  - en
ID  - JAC_2010__31_1_a2
ER  - 
%0 Journal Article
%A Smith, Simon M.
%T Infinite primitive directed graphs
%J Journal of Algebraic Combinatorics
%D 2010
%P 131-141
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a2/
%G en
%F JAC_2010__31_1_a2
Smith, Simon M. Infinite primitive directed graphs. Journal of Algebraic Combinatorics, Tome 31 (2010) no. 1, pp. 131-141. http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a2/