Bounds on permutation codes of distance four
Journal of Algebraic Combinatorics, Tome 31 (2010) no. 1, pp. 143-158.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A permutation code of length $n$ and distance $d$ is a set $\Gamma $of permutations from some fixed set of $n$ symbols such that the Hamming distance between each distinct $x, y\in \Gamma $is at least $d$. In this note, we determine some new results on the maximum size of a permutation code with distance equal to 4, the smallest interesting value. The upper bound is improved for almost all $n$ via an optimization problem on Young diagrams. A new recursive construction improves known lower bounds for small values of $n$.
Keywords: keywords symmetric group, permutation code, permutation array, characters, Young diagram, linear programming
@article{JAC_2010__31_1_a1,
     author = {Dukes, P. and Sawchuck, N.},
     title = {Bounds on permutation codes of distance four},
     journal = {Journal of Algebraic Combinatorics},
     pages = {143--158},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a1/}
}
TY  - JOUR
AU  - Dukes, P.
AU  - Sawchuck, N.
TI  - Bounds on permutation codes of distance four
JO  - Journal of Algebraic Combinatorics
PY  - 2010
SP  - 143
EP  - 158
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a1/
LA  - en
ID  - JAC_2010__31_1_a1
ER  - 
%0 Journal Article
%A Dukes, P.
%A Sawchuck, N.
%T Bounds on permutation codes of distance four
%J Journal of Algebraic Combinatorics
%D 2010
%P 143-158
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a1/
%G en
%F JAC_2010__31_1_a1
Dukes, P.; Sawchuck, N. Bounds on permutation codes of distance four. Journal of Algebraic Combinatorics, Tome 31 (2010) no. 1, pp. 143-158. http://geodesic.mathdoc.fr/item/JAC_2010__31_1_a1/