The complexity of certain Specht modules for the symmetric group.
Journal of Algebraic Combinatorics, Tome 30 (2009) no. 4, pp. 421-427.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: During the 2004-2005 academic year the VIGRE Algebra Research Group at the University of Georgia (UGA VIGRE) computed the complexities of certain Specht modules $S ^{ \lambda }$ for the symmetric group $\Sigma _{ d }$, using the computer algebra program Magma. The complexity of an indecomposable module does not exceed the $p$-rank of the defect group of its block. The UGA VIGRE Algebra Group conjectured that, generically, the complexity of a Specht module attains this maximal value; that it is smaller precisely when the Young diagram of $\lambda $ is built out of $p\times p$ blocks. We prove one direction of this conjecture by showing these Specht modules do indeed have less than maximal complexity. It turns out that this class of partitions, which has not previously appeared in the literature, arises naturally as the solution to a question about the $p$-weight of partitions and branching.
Keywords: keywords symmetric group, Specht module, complexity
@article{JAC_2009__30_4_a8,
     author = {Hemmer, David J.},
     title = {The complexity of certain {Specht} modules for the symmetric group.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {421--427},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a8/}
}
TY  - JOUR
AU  - Hemmer, David J.
TI  - The complexity of certain Specht modules for the symmetric group.
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 421
EP  - 427
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a8/
LA  - en
ID  - JAC_2009__30_4_a8
ER  - 
%0 Journal Article
%A Hemmer, David J.
%T The complexity of certain Specht modules for the symmetric group.
%J Journal of Algebraic Combinatorics
%D 2009
%P 421-427
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a8/
%G en
%F JAC_2009__30_4_a8
Hemmer, David J. The complexity of certain Specht modules for the symmetric group.. Journal of Algebraic Combinatorics, Tome 30 (2009) no. 4, pp. 421-427. http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a8/