Hamiltonian cycles in cubic Cayley graphs: The $\langle 2,4k,3\rangle $ case
Journal of Algebraic Combinatorics, Tome 30 (2009) no. 4, pp. 447-475.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It was proved by Glover and Marušič (J. Eur. Math. Soc. 9:775-787, 2007), that cubic Cayley graphs arising from groups $G=\langle a, x\mid a ^{2}= x ^{ s }=( ax) ^{3}=1,\cdots \rangle $having a $(2, s,3)$-presentation, that is, from groups generated by an involution $a$ and an element $x$ of order $s$ such that their product $ax$ has order 3, have a Hamiltonian cycle when $| G| (and thus also s)$ is congruent to 2 modulo 4, and have a Hamiltonian path when $| G|$ is congruent to 0 modulo 4. In this article the existence of a Hamiltonian cycle is proved when apart from $| G|$ also $s$ is congruent to 0 modulo 4, thus leaving $| G|$ congruent to 0 modulo 4 with $s$ either odd or congruent to 2 modulo 4 as the only remaining cases to be dealt with in order to establish existence of Hamiltonian cycles for this particular class of cubic Cayley graphs.
Keywords: keywords Hamiltonian cycle, Cayley graph, cubic arc-transitive graph, consistent cycle, cyclic edge connectivity
@article{JAC_2009__30_4_a6,
     author = {Glover, Henry H. and Kutnar, Klavdija and Maru\v{s}i\v{c}, Dragan},
     title = {Hamiltonian cycles in cubic {Cayley} graphs: {The} $\langle 2,4k,3\rangle $ case},
     journal = {Journal of Algebraic Combinatorics},
     pages = {447--475},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a6/}
}
TY  - JOUR
AU  - Glover, Henry H.
AU  - Kutnar, Klavdija
AU  - Marušič, Dragan
TI  - Hamiltonian cycles in cubic Cayley graphs: The $\langle 2,4k,3\rangle $ case
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 447
EP  - 475
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a6/
LA  - en
ID  - JAC_2009__30_4_a6
ER  - 
%0 Journal Article
%A Glover, Henry H.
%A Kutnar, Klavdija
%A Marušič, Dragan
%T Hamiltonian cycles in cubic Cayley graphs: The $\langle 2,4k,3\rangle $ case
%J Journal of Algebraic Combinatorics
%D 2009
%P 447-475
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a6/
%G en
%F JAC_2009__30_4_a6
Glover, Henry H.; Kutnar, Klavdija; Marušič, Dragan. Hamiltonian cycles in cubic Cayley graphs: The $\langle 2,4k,3\rangle $ case. Journal of Algebraic Combinatorics, Tome 30 (2009) no. 4, pp. 447-475. http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a6/