Quadratic Gröbner bases for smooth $3\times 3$ transportation polytopes
Journal of Algebraic Combinatorics, Tome 30 (2009) no. 4, pp. 477-489.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The toric ideals of $3\times 3$ transportation polytopes $T _{ rc}$ mathsfT_mathbfrc are quadratically generated. The only exception is the Birkhoff polytope $B _{3}$. If $T _{ rc}$ mathsfT_mathbfrc is not a multiple of $B _{3}$, these ideals even have square-free quadratic initial ideals. This class contains all smooth $3\times 3$ transportation polytopes.
Keywords: keywords toric ideal, Gröbner basis, quadratic triangulation, transportation polytope
@article{JAC_2009__30_4_a5,
     author = {Haase, Christian and Paffenholz, Andreas},
     title = {Quadratic {Gr\"obner} bases for smooth $3\times 3$ transportation polytopes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {477--489},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a5/}
}
TY  - JOUR
AU  - Haase, Christian
AU  - Paffenholz, Andreas
TI  - Quadratic Gröbner bases for smooth $3\times 3$ transportation polytopes
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 477
EP  - 489
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a5/
LA  - en
ID  - JAC_2009__30_4_a5
ER  - 
%0 Journal Article
%A Haase, Christian
%A Paffenholz, Andreas
%T Quadratic Gröbner bases for smooth $3\times 3$ transportation polytopes
%J Journal of Algebraic Combinatorics
%D 2009
%P 477-489
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a5/
%G en
%F JAC_2009__30_4_a5
Haase, Christian; Paffenholz, Andreas. Quadratic Gröbner bases for smooth $3\times 3$ transportation polytopes. Journal of Algebraic Combinatorics, Tome 30 (2009) no. 4, pp. 477-489. http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a5/