A generalization of adjoint crystals for the quantized affine algebras of type $A^{(1)}_n$, $C^{(1)}_n$ and $D^{(2)}_{n+1}$
Journal of Algebraic Combinatorics, Tome 30 (2009) no. 4, pp. 491-514.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We generalize Benkart-Frenkel-Kang-Lee's adjoint crystals and describe their crystal structure for type $A _{ n } ^{(1)}, C _{ n } ^{(1)}$ and $D _{ n+1} ^{(2)}$.
Keywords: keywords crystal base, quantized affine algebra, kirillov-reshetikhin module
@article{JAC_2009__30_4_a4,
     author = {Kodera, Ryosuke},
     title = {A generalization of adjoint crystals for the quantized affine algebras of type $A^{(1)}_n$, $C^{(1)}_n$ and $D^{(2)}_{n+1}$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {491--514},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a4/}
}
TY  - JOUR
AU  - Kodera, Ryosuke
TI  - A generalization of adjoint crystals for the quantized affine algebras of type $A^{(1)}_n$, $C^{(1)}_n$ and $D^{(2)}_{n+1}$
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 491
EP  - 514
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a4/
LA  - en
ID  - JAC_2009__30_4_a4
ER  - 
%0 Journal Article
%A Kodera, Ryosuke
%T A generalization of adjoint crystals for the quantized affine algebras of type $A^{(1)}_n$, $C^{(1)}_n$ and $D^{(2)}_{n+1}$
%J Journal of Algebraic Combinatorics
%D 2009
%P 491-514
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a4/
%G en
%F JAC_2009__30_4_a4
Kodera, Ryosuke. A generalization of adjoint crystals for the quantized affine algebras of type $A^{(1)}_n$, $C^{(1)}_n$ and $D^{(2)}_{n+1}$. Journal of Algebraic Combinatorics, Tome 30 (2009) no. 4, pp. 491-514. http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a4/