Simple ${SL}(n)$-modules with normal closures of maximal torus orbits
Journal of Algebraic Combinatorics, Tome 30 (2009) no. 4, pp. 515-538.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $T$ be the subgroup of diagonal matrices in the group $SL( n)$. The aim of this paper is to find all finite-dimensional simple rational $SL( n)$-modules $V$ with the following property: for each point $v\in V$ the closure [ `$( Tv)$] overlineTv of its $T$-orbit is a normal affine variety. Moreover, for any $SL( n)$-module without this property a $T$-orbit with non-normal closure is constructed. The proof is purely combinatorial: it deals with the set of weights of simple $SL( n)$-modules. The saturation property is checked for each subset in the set of weights.
Keywords: keywords toric variety, normality, saturation
@article{JAC_2009__30_4_a3,
     author = {Kuyumzhiyan, Karine},
     title = {Simple ${SL}(n)$-modules with normal closures of maximal torus orbits},
     journal = {Journal of Algebraic Combinatorics},
     pages = {515--538},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a3/}
}
TY  - JOUR
AU  - Kuyumzhiyan, Karine
TI  - Simple ${SL}(n)$-modules with normal closures of maximal torus orbits
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 515
EP  - 538
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a3/
LA  - en
ID  - JAC_2009__30_4_a3
ER  - 
%0 Journal Article
%A Kuyumzhiyan, Karine
%T Simple ${SL}(n)$-modules with normal closures of maximal torus orbits
%J Journal of Algebraic Combinatorics
%D 2009
%P 515-538
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a3/
%G en
%F JAC_2009__30_4_a3
Kuyumzhiyan, Karine. Simple ${SL}(n)$-modules with normal closures of maximal torus orbits. Journal of Algebraic Combinatorics, Tome 30 (2009) no. 4, pp. 515-538. http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a3/