Hyperplanes of $DW(5,{\mathbb{K}})$ with ${\mathbb{K}}$ a perfect field of characteristic 2
Journal of Algebraic Combinatorics, Tome 30 (2009) no. 4, pp. 567-584.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\mathbb K$ mathbbK be a perfect field of characteristic 2. In this paper, we classify all hyperplanes of the symplectic dual polar space $D$W$(5,\mathbb K) DW(5,{\mathbb{K}})$ that arise from its Grassmann embedding. We show that the number of isomorphism classes of such hyperplanes is equal to $5+ N$, where $N$ is the number of equivalence classes of the following equivalence relation $R$ on the set l Ĩ $\mathbb K | X ^{2}+ l X+1$ isirreducible {lambda$\in $mathbbK | X^2+$\lambda $X+1mbox isirreducible in $\mathbb K[ X]$ mboxin mathbbK[X]} : $( \lambda _{1}, \lambda _{2})\in R$ whenever there exists an automorphism $\sigma $ of $\mathbb K$ mathbbK and an $a$ Ĩ $\mathbb K$ a$\in $mathbbK such that $( \lambda _{2} ^{ \sigma }) ^{ - 1}= \lambda _{1} ^{ - 1}+ a ^{2}+ a$.
Keywords: keywords symplectic dual polar space, hyperplane, perfect field
@article{JAC_2009__30_4_a0,
     author = {De Bruyn, Bart},
     title = {Hyperplanes of $DW(5,{\mathbb{K}})$ with ${\mathbb{K}}$ a perfect field of characteristic 2},
     journal = {Journal of Algebraic Combinatorics},
     pages = {567--584},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a0/}
}
TY  - JOUR
AU  - De Bruyn, Bart
TI  - Hyperplanes of $DW(5,{\mathbb{K}})$ with ${\mathbb{K}}$ a perfect field of characteristic 2
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 567
EP  - 584
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a0/
LA  - en
ID  - JAC_2009__30_4_a0
ER  - 
%0 Journal Article
%A De Bruyn, Bart
%T Hyperplanes of $DW(5,{\mathbb{K}})$ with ${\mathbb{K}}$ a perfect field of characteristic 2
%J Journal of Algebraic Combinatorics
%D 2009
%P 567-584
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a0/
%G en
%F JAC_2009__30_4_a0
De Bruyn, Bart. Hyperplanes of $DW(5,{\mathbb{K}})$ with ${\mathbb{K}}$ a perfect field of characteristic 2. Journal of Algebraic Combinatorics, Tome 30 (2009) no. 4, pp. 567-584. http://geodesic.mathdoc.fr/item/JAC_2009__30_4_a0/