Frieze patterns for punctured discs
Journal of Algebraic Combinatorics, Tome 30 (2009) no. 3, pp. 349-379.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We construct frieze patterns of type $D _{ N }$ with entries which are numbers of matchings between vertices and triangles of corresponding triangulations of a punctured disc. For triangulations corresponding to orientations of the Dynkin diagram of type $D _{ N }$, we show that the numbers in the pattern can be interpreted as specialisations of cluster variables in the corresponding Fomin-Zelevinsky cluster algebra. This is generalised to arbitrary triangulations in an appendix by Hugh Thomas.
Keywords: keywords cluster algebra, frieze pattern, Ptolemy rule, exchange relation, matching, Riemann surface, disc, triangulation
@article{JAC_2009__30_3_a2,
     author = {Baur, Karin and Marsh, Robert J.},
     title = {Frieze patterns for punctured discs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {349--379},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__30_3_a2/}
}
TY  - JOUR
AU  - Baur, Karin
AU  - Marsh, Robert J.
TI  - Frieze patterns for punctured discs
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 349
EP  - 379
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__30_3_a2/
LA  - en
ID  - JAC_2009__30_3_a2
ER  - 
%0 Journal Article
%A Baur, Karin
%A Marsh, Robert J.
%T Frieze patterns for punctured discs
%J Journal of Algebraic Combinatorics
%D 2009
%P 349-379
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__30_3_a2/
%G en
%F JAC_2009__30_3_a2
Baur, Karin; Marsh, Robert J. Frieze patterns for punctured discs. Journal of Algebraic Combinatorics, Tome 30 (2009) no. 3, pp. 349-379. http://geodesic.mathdoc.fr/item/JAC_2009__30_3_a2/