Polarized and homogeneous embeddings of dual polar spaces
Journal of Algebraic Combinatorics, Tome 30 (2009) no. 3, pp. 381-399.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\Gamma $be the dual of a classical polar space and let $e$ be a projective embedding of $\Gamma $, defined over a commutative division ring. We shall prove that, if $e$ is homogeneous, then it is polarized.
Keywords: keywords dual polar spaces, polarized embeddings, homogeneous embeddings
@article{JAC_2009__30_3_a1,
     author = {Blok, R.J. and Cardinali, I. and De Bruyn, B. and Pasini, A.},
     title = {Polarized and homogeneous embeddings of dual polar spaces},
     journal = {Journal of Algebraic Combinatorics},
     pages = {381--399},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__30_3_a1/}
}
TY  - JOUR
AU  - Blok, R.J.
AU  - Cardinali, I.
AU  - De Bruyn, B.
AU  - Pasini, A.
TI  - Polarized and homogeneous embeddings of dual polar spaces
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 381
EP  - 399
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__30_3_a1/
LA  - en
ID  - JAC_2009__30_3_a1
ER  - 
%0 Journal Article
%A Blok, R.J.
%A Cardinali, I.
%A De Bruyn, B.
%A Pasini, A.
%T Polarized and homogeneous embeddings of dual polar spaces
%J Journal of Algebraic Combinatorics
%D 2009
%P 381-399
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__30_3_a1/
%G en
%F JAC_2009__30_3_a1
Blok, R.J.; Cardinali, I.; De Bruyn, B.; Pasini, A. Polarized and homogeneous embeddings of dual polar spaces. Journal of Algebraic Combinatorics, Tome 30 (2009) no. 3, pp. 381-399. http://geodesic.mathdoc.fr/item/JAC_2009__30_3_a1/