On $q$-analogs of weight multiplicities for the Lie superalgebras $\mathfrak{gl}(n,m)$ and $\mathfrak{spo}(2n,M)$
Journal of Algebraic Combinatorics, Tome 30 (2009) no. 2, pp. 141-163.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The paper is devoted to the generalization of Lusztig's $q$-analog of weight multiplicities to the Lie superalgebras $\mathfrak gl( n, m)$ mathfrakgl(n,m) and $\mathfrak s$po($2 n, M$). mathfrak${spo(}2n,M)$. We define such $q$-analogs $K _{ \lambda , \mu }( q)$ for the typical modules and for the irreducible covariant tensor $\mathfrak gl( n, m)$ mathfrakgl(n,m) -modules of highest weight $\lambda $. For $\mathfrak gl( n, m)$, mathfrakgl(n,m), the defined polynomials have nonnegative integer coefficients if the weight $\mu $ is dominant. For $\mathfrak s$po($2 n, M$) mathfrak${spo(}2n,M)$ , we show that the positivity property holds when $\mu $ is dominant and sufficiently far from a specific wall of the fundamental chamber. We also establish that the $q$-analog associated to an irreducible covariant tensor $\mathfrak gl( n, m)$ mathfrakgl(n,m) -module of highest weight $\lambda $ and a dominant weight $\mu $ is the generating series of a simple statistic on the set of semistandard hook-tableaux of shape $\lambda $ and weight $\mu $. This statistic can be regarded as a super analog of the charge statistic defined by Lascoux and Schützenberger.
Keywords: keywords general linear superalgebras, orthosymplectic superalgebras, typical modules, irreducible covariant tensor modules, Lusztig's $q$-analog of weight multiplicity, semistandard hook-tableaux, charge statistic
@article{JAC_2009__30_2_a6,
     author = {Lecouvey, C\'edric and Lenart, Cristian},
     title = {On $q$-analogs of weight multiplicities for the {Lie} superalgebras $\mathfrak{gl}(n,m)$ and $\mathfrak{spo}(2n,M)$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {141--163},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a6/}
}
TY  - JOUR
AU  - Lecouvey, Cédric
AU  - Lenart, Cristian
TI  - On $q$-analogs of weight multiplicities for the Lie superalgebras $\mathfrak{gl}(n,m)$ and $\mathfrak{spo}(2n,M)$
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 141
EP  - 163
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a6/
LA  - en
ID  - JAC_2009__30_2_a6
ER  - 
%0 Journal Article
%A Lecouvey, Cédric
%A Lenart, Cristian
%T On $q$-analogs of weight multiplicities for the Lie superalgebras $\mathfrak{gl}(n,m)$ and $\mathfrak{spo}(2n,M)$
%J Journal of Algebraic Combinatorics
%D 2009
%P 141-163
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a6/
%G en
%F JAC_2009__30_2_a6
Lecouvey, Cédric; Lenart, Cristian. On $q$-analogs of weight multiplicities for the Lie superalgebras $\mathfrak{gl}(n,m)$ and $\mathfrak{spo}(2n,M)$. Journal of Algebraic Combinatorics, Tome 30 (2009) no. 2, pp. 141-163. http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a6/