Matching polytopes, toric geometry, and the totally non-negative Grassmannian
Journal of Algebraic Combinatorics, Tome 30 (2009) no. 2, pp. 173-191.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we use toric geometry to investigate the topology of the totally non-negative part of the Grassmannian, denoted $( Gr _{ k, n }) _{\geq 0}$. This is a cell complex whose cells $\Delta _{ G }$ can be parameterized in terms of the combinatorics of plane-bipartite graphs $G$. To each cell $\Delta _{ G }$ we associate a certain polytope $P( G)$. The polytopes $P( G)$ are analogous to the well-known Birkhoff polytopes, and we describe their face lattices in terms of matchings and unions of matchings of $G$. We also demonstrate a close connection between the polytopes $P( G)$ and matroid polytopes. We use the data of $P( G)$ to define an associated toric variety $X _{ G }$. We use our technology to prove that the cell decomposition of $( Gr _{ k, n }) _{\geq 0}$ is a CW complex, and furthermore, that the Euler characteristic of the closure of each cell of $( Gr _{ k, n }) _{\geq 0}$ is 1.
Keywords: keywords total positivity, Grassmannian, CW complexes, Birkhoff polytope, matching, matroid polytope, cluster algebra
@article{JAC_2009__30_2_a4,
     author = {Postnikov, Alexander and Speyer, David and Williams, Lauren},
     title = {Matching polytopes, toric geometry, and the totally non-negative {Grassmannian}},
     journal = {Journal of Algebraic Combinatorics},
     pages = {173--191},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a4/}
}
TY  - JOUR
AU  - Postnikov, Alexander
AU  - Speyer, David
AU  - Williams, Lauren
TI  - Matching polytopes, toric geometry, and the totally non-negative Grassmannian
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 173
EP  - 191
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a4/
LA  - en
ID  - JAC_2009__30_2_a4
ER  - 
%0 Journal Article
%A Postnikov, Alexander
%A Speyer, David
%A Williams, Lauren
%T Matching polytopes, toric geometry, and the totally non-negative Grassmannian
%J Journal of Algebraic Combinatorics
%D 2009
%P 173-191
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a4/
%G en
%F JAC_2009__30_2_a4
Postnikov, Alexander; Speyer, David; Williams, Lauren. Matching polytopes, toric geometry, and the totally non-negative Grassmannian. Journal of Algebraic Combinatorics, Tome 30 (2009) no. 2, pp. 173-191. http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a4/