Equality of multiplicity free skew characters
Journal of Algebraic Combinatorics, Tome 30 (2009) no. 2, pp. 215-232.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we show that two skew diagrams $\lambda / \mu $ and $\alpha / \beta $ can represent the same multiplicity free skew character $[ \lambda / \mu ]=[ \alpha / \beta ]$ only in the the trivial cases when $\lambda / \mu $ and $\alpha / \beta $ are the same up to translation or rotation or if $\lambda = \alpha $ is a staircase partition $\lambda =( l, l - 1,\cdots ,2,1)$ and $\lambda / \mu $ and $\alpha / \beta $ are conjugate of each other.
Keywords: keywords skew characters, symmetric group, skew Schur functions, Schubert calculus
@article{JAC_2009__30_2_a2,
     author = {Gutschwager, Christian},
     title = {Equality of multiplicity free skew characters},
     journal = {Journal of Algebraic Combinatorics},
     pages = {215--232},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a2/}
}
TY  - JOUR
AU  - Gutschwager, Christian
TI  - Equality of multiplicity free skew characters
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 215
EP  - 232
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a2/
LA  - en
ID  - JAC_2009__30_2_a2
ER  - 
%0 Journal Article
%A Gutschwager, Christian
%T Equality of multiplicity free skew characters
%J Journal of Algebraic Combinatorics
%D 2009
%P 215-232
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a2/
%G en
%F JAC_2009__30_2_a2
Gutschwager, Christian. Equality of multiplicity free skew characters. Journal of Algebraic Combinatorics, Tome 30 (2009) no. 2, pp. 215-232. http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a2/