$P$-orderings of finite subsets of Dedekind domains
Journal of Algebraic Combinatorics, Tome 30 (2009) no. 2, pp. 233-253.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: If $R$ is a Dedekind domain, $P$ a prime ideal of $R$ and $S\subseteq R$ a finite subset then a $P$-ordering of $S$, as introduced by M. Bhargava in (J. Reine Angew. Math. 490:101-127, 1997), is an ordering ${ a _{ i }} _{ i=1} ^{ m }$ of the elements of $S$ with the property that, for each $1 i\leq m$, the choice of $a _{ i }$ minimizes the $P$-adic valuation of $\prod _{ j i }($ s - $a _{ j })$ over elements $s\in S$. If $S, S ^$^prime are two finite subsets of R of the same cardinality then a bijection varphi: SrightarrowS ^^prime is a $P$-ordering equivalence if it preserves $P$-orderings. In this paper we give upper and lower bounds for the number of distinct $P$-orderings a finite set can have in terms of its cardinality and give an upper bound on the number of $P$-ordering equivalence classes of a given cardinality.
Keywords: keywords $P$-ordering, $P$-sequence, Dedekind domain
@article{JAC_2009__30_2_a1,
     author = {Johnson, Keith},
     title = {$P$-orderings of finite subsets of {Dedekind} domains},
     journal = {Journal of Algebraic Combinatorics},
     pages = {233--253},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a1/}
}
TY  - JOUR
AU  - Johnson, Keith
TI  - $P$-orderings of finite subsets of Dedekind domains
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 233
EP  - 253
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a1/
LA  - en
ID  - JAC_2009__30_2_a1
ER  - 
%0 Journal Article
%A Johnson, Keith
%T $P$-orderings of finite subsets of Dedekind domains
%J Journal of Algebraic Combinatorics
%D 2009
%P 233-253
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a1/
%G en
%F JAC_2009__30_2_a1
Johnson, Keith. $P$-orderings of finite subsets of Dedekind domains. Journal of Algebraic Combinatorics, Tome 30 (2009) no. 2, pp. 233-253. http://geodesic.mathdoc.fr/item/JAC_2009__30_2_a1/