Compositions inside a rectangle and unimodality
Journal of Algebraic Combinatorics, Tome 29 (2009) no. 4, pp. 405-411.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $c ^{ k, l }( n)$ be the number of compositions (ordered partitions) of the integer $n$ whose Ferrers diagram fits inside a $k\times l$ rectangle. The purpose of this note is to give a simple, algebraic proof of a conjecture of Vatter that the sequence $c ^{ k, l }(0), c ^{ k, l }(1),\cdots , c ^{ k, l }( kl)$ is unimodal. The problem of giving a combinatorial proof of this fact is discussed, but is still open.
Keywords: keywords composition, integer partition, unimodal
@article{JAC_2009__29_4_a7,
     author = {Sagan, Bruce E.},
     title = {Compositions inside a rectangle and unimodality},
     journal = {Journal of Algebraic Combinatorics},
     pages = {405--411},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a7/}
}
TY  - JOUR
AU  - Sagan, Bruce E.
TI  - Compositions inside a rectangle and unimodality
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 405
EP  - 411
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a7/
LA  - en
ID  - JAC_2009__29_4_a7
ER  - 
%0 Journal Article
%A Sagan, Bruce E.
%T Compositions inside a rectangle and unimodality
%J Journal of Algebraic Combinatorics
%D 2009
%P 405-411
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a7/
%G en
%F JAC_2009__29_4_a7
Sagan, Bruce E. Compositions inside a rectangle and unimodality. Journal of Algebraic Combinatorics, Tome 29 (2009) no. 4, pp. 405-411. http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a7/