On $m$-regular systems on $\Bbb H (5,q^{2})$
Journal of Algebraic Combinatorics, Tome 29 (2009) no. 4, pp. 437-445.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The notion of $m$-regular system on the Hermitian variety $\Bbb H( n, q ^{2})$ was introduced by B. Segre (Ann. Math. Pura Appl. 70:1-201, 1965). Here, three infinite families of hemisystems on $\Bbb $H$(5, q ^{2}), q$ odd, are constructed.
Keywords: keywords Hermitian variety, commuting polarities, regular system, hemisystem
@article{JAC_2009__29_4_a5,
     author = {Cossidente, Antonio and Penttila, Tim},
     title = {On $m$-regular systems on $\Bbb H (5,q^{2})$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {437--445},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a5/}
}
TY  - JOUR
AU  - Cossidente, Antonio
AU  - Penttila, Tim
TI  - On $m$-regular systems on $\Bbb H (5,q^{2})$
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 437
EP  - 445
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a5/
LA  - en
ID  - JAC_2009__29_4_a5
ER  - 
%0 Journal Article
%A Cossidente, Antonio
%A Penttila, Tim
%T On $m$-regular systems on $\Bbb H (5,q^{2})$
%J Journal of Algebraic Combinatorics
%D 2009
%P 437-445
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a5/
%G en
%F JAC_2009__29_4_a5
Cossidente, Antonio; Penttila, Tim. On $m$-regular systems on $\Bbb H (5,q^{2})$. Journal of Algebraic Combinatorics, Tome 29 (2009) no. 4, pp. 437-445. http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a5/