A modular absolute bound condition for primitive association schemes
Journal of Algebraic Combinatorics, Tome 29 (2009) no. 4, pp. 447-456.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The well-known absolute bound condition for a primitive symmetric association scheme $( X, S)$ gives an upper bound for $| X|$ in terms of $| S|$ and the minimal non-principal multiplicity of the scheme. In this paper we prove another upper bounds for $| X|$ for an arbitrary primitive scheme $( X, S)$. They do not depend on $| S|$ but depend on some invariants of its adjacency algebra $KS$ where $K$ is an algebraic number field or a finite field.
Keywords: keywords association scheme, adjacency algebra
@article{JAC_2009__29_4_a4,
     author = {Hanaki, Akihide and Ponomarenko, Ilia},
     title = {A modular absolute bound condition for primitive association schemes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {447--456},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a4/}
}
TY  - JOUR
AU  - Hanaki, Akihide
AU  - Ponomarenko, Ilia
TI  - A modular absolute bound condition for primitive association schemes
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 447
EP  - 456
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a4/
LA  - en
ID  - JAC_2009__29_4_a4
ER  - 
%0 Journal Article
%A Hanaki, Akihide
%A Ponomarenko, Ilia
%T A modular absolute bound condition for primitive association schemes
%J Journal of Algebraic Combinatorics
%D 2009
%P 447-456
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a4/
%G en
%F JAC_2009__29_4_a4
Hanaki, Akihide; Ponomarenko, Ilia. A modular absolute bound condition for primitive association schemes. Journal of Algebraic Combinatorics, Tome 29 (2009) no. 4, pp. 447-456. http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a4/