Knuth relations for the hyperoctahedral groups
Journal of Algebraic Combinatorics, Tome 29 (2009) no. 4, pp. 509-535.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: C. Bonnafé, M. Geck, L. Iancu, and T. Lam have conjectured a description of Kazhdan-Lusztig cells in unequal parameter Hecke algebras of type $B$ which is based on domino tableaux of arbitrary rank. In the integer case, this generalizes the work of D. Garfinkle. We adapt her methods and construct a family of operators which generate the equivalence classes on pairs of arbitrary rank domino tableaux described in the above conjecture.
Keywords: keywords unequal parameter iwahori-Hecke algebra, domino tableaux, Robinson-Schensted algorithm
@article{JAC_2009__29_4_a1,
     author = {Pietraho, Thomas},
     title = {Knuth relations for the hyperoctahedral groups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {509--535},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a1/}
}
TY  - JOUR
AU  - Pietraho, Thomas
TI  - Knuth relations for the hyperoctahedral groups
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 509
EP  - 535
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a1/
LA  - en
ID  - JAC_2009__29_4_a1
ER  - 
%0 Journal Article
%A Pietraho, Thomas
%T Knuth relations for the hyperoctahedral groups
%J Journal of Algebraic Combinatorics
%D 2009
%P 509-535
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a1/
%G en
%F JAC_2009__29_4_a1
Pietraho, Thomas. Knuth relations for the hyperoctahedral groups. Journal of Algebraic Combinatorics, Tome 29 (2009) no. 4, pp. 509-535. http://geodesic.mathdoc.fr/item/JAC_2009__29_4_a1/