Integral modular data and congruences
Journal of Algebraic Combinatorics, Tome 29 (2009) no. 3, pp. 357-387.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We compute all fusion algebras with symmetric rational $S$-matrix up to dimension 12. Only two of them may be used as $S$-matrices in a modular datum: the $S$-matrices of the quantum doubles of $\Bbb $Z/$2\Bbb Z$ and $S _{3}$. Almost all of them satisfy a certain congruence which has some interesting implications, for example for their degrees. We also give explicitly an infinite sequence of modular data with rational $S$- and $T$-matrices which are neither tensor products of smaller modular data nor $S$-matrices of quantum doubles of finite groups. For some sequences of finite groups (certain subdirect products of $S _{3}, D _{4}, Q _{8}, S _{4}$), we prove the rationality of the $S$-matrices of their quantum doubles.
Keywords: keywords modular data, fusion algebra, quantum double, Fourier matrix, modular group
@article{JAC_2009__29_3_a1,
     author = {Cuntz, Michael},
     title = {Integral modular data and congruences},
     journal = {Journal of Algebraic Combinatorics},
     pages = {357--387},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__29_3_a1/}
}
TY  - JOUR
AU  - Cuntz, Michael
TI  - Integral modular data and congruences
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 357
EP  - 387
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__29_3_a1/
LA  - en
ID  - JAC_2009__29_3_a1
ER  - 
%0 Journal Article
%A Cuntz, Michael
%T Integral modular data and congruences
%J Journal of Algebraic Combinatorics
%D 2009
%P 357-387
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__29_3_a1/
%G en
%F JAC_2009__29_3_a1
Cuntz, Michael. Integral modular data and congruences. Journal of Algebraic Combinatorics, Tome 29 (2009) no. 3, pp. 357-387. http://geodesic.mathdoc.fr/item/JAC_2009__29_3_a1/