Arithmetical rank of squarefree monomial ideals of small arithmetic degree
Journal of Algebraic Combinatorics, Tome 29 (2009) no. 3, pp. 389-404.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we prove that the arithmetical rank of a squarefree monomial ideal $I$ is equal to the projective dimension of $R/ I$ in the following cases: (a) $I$ is an almost complete intersection; (b) arithdeg $I=reg I$; (c) arithdeg $I=indeg I+1$. We also classify all almost complete intersection squarefree monomial ideals in terms of hypergraphs, and use this classification in the proof in case (c).
Keywords: keywords arithmetical rank, almost complete intersection, Alexander duality, regularity, arithmetic degree, initial degree
@article{JAC_2009__29_3_a0,
     author = {Kimura, Kyouko and Terai, Naoki and Yoshida, Ken-ichi},
     title = {Arithmetical rank of squarefree monomial ideals of small arithmetic degree},
     journal = {Journal of Algebraic Combinatorics},
     pages = {389--404},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__29_3_a0/}
}
TY  - JOUR
AU  - Kimura, Kyouko
AU  - Terai, Naoki
AU  - Yoshida, Ken-ichi
TI  - Arithmetical rank of squarefree monomial ideals of small arithmetic degree
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 389
EP  - 404
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__29_3_a0/
LA  - en
ID  - JAC_2009__29_3_a0
ER  - 
%0 Journal Article
%A Kimura, Kyouko
%A Terai, Naoki
%A Yoshida, Ken-ichi
%T Arithmetical rank of squarefree monomial ideals of small arithmetic degree
%J Journal of Algebraic Combinatorics
%D 2009
%P 389-404
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__29_3_a0/
%G en
%F JAC_2009__29_3_a0
Kimura, Kyouko; Terai, Naoki; Yoshida, Ken-ichi. Arithmetical rank of squarefree monomial ideals of small arithmetic degree. Journal of Algebraic Combinatorics, Tome 29 (2009) no. 3, pp. 389-404. http://geodesic.mathdoc.fr/item/JAC_2009__29_3_a0/