The case of equality in the Livingstone-Wagner theorem.
Journal of Algebraic Combinatorics, Tome 29 (2009) no. 2, pp. 215-227.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G$ be a permutation group acting on a set $\Omega $of size $n\in \Bbb N$ and let $1\leq k( n - 1)/2$. Livingstone and Wagner proved that the number of orbits of $G$ on $k$-subsets of $\Omega $is less than or equal to the number of orbits on $( k+1)$-subsets. We investigate the cases when equality occurs.
Keywords: keywords livingstone-wagner theorem, permutation groups, orbits, partitions
@article{JAC_2009__29_2_a2,
     author = {Bundy, David and Hart, Sarah},
     title = {The case of equality in the {Livingstone-Wagner} theorem.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {215--227},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__29_2_a2/}
}
TY  - JOUR
AU  - Bundy, David
AU  - Hart, Sarah
TI  - The case of equality in the Livingstone-Wagner theorem.
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 215
EP  - 227
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__29_2_a2/
LA  - en
ID  - JAC_2009__29_2_a2
ER  - 
%0 Journal Article
%A Bundy, David
%A Hart, Sarah
%T The case of equality in the Livingstone-Wagner theorem.
%J Journal of Algebraic Combinatorics
%D 2009
%P 215-227
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__29_2_a2/
%G en
%F JAC_2009__29_2_a2
Bundy, David; Hart, Sarah. The case of equality in the Livingstone-Wagner theorem.. Journal of Algebraic Combinatorics, Tome 29 (2009) no. 2, pp. 215-227. http://geodesic.mathdoc.fr/item/JAC_2009__29_2_a2/