Leading coefficients of Kazhdan-Lusztig polynomials for Deodhar elements.
Journal of Algebraic Combinatorics, Tome 29 (2009) no. 2, pp. 229-260.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that the leading coefficient of the Kazhdan-Lusztig polynomial $P _{ x, w }( q)$ known as $\mu ( x, w)$ is always either 0 or 1 when $w$ is a Deodhar element of a finite Weyl group. The Deodhar elements have previously been characterized using pattern avoidance in Billey and Warrington (J. Algebraic Combin. $13(2)$:111-136, [ 2001]) and Billey and Jones (Ann. Comb. [ 2008], to appear). In type $A$, these elements are precisely the 321-hexagon avoiding permutations. Using Deodhar's algorithm (Deodhar in Geom. Dedicata $63(1)$:95-119, [ 1990]), we provide some combinatorial criteria to determine when $\mu ( x, w)=1$ for such permutations $w$.
Keywords: keywords Kazhdan-Lusztig polynomial, 321-hexagon, 0-1 conjecture, pattern avoidance
@article{JAC_2009__29_2_a1,
     author = {Jones, Brant C.},
     title = {Leading coefficients of {Kazhdan-Lusztig} polynomials for {Deodhar} elements.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {229--260},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__29_2_a1/}
}
TY  - JOUR
AU  - Jones, Brant C.
TI  - Leading coefficients of Kazhdan-Lusztig polynomials for Deodhar elements.
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 229
EP  - 260
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__29_2_a1/
LA  - en
ID  - JAC_2009__29_2_a1
ER  - 
%0 Journal Article
%A Jones, Brant C.
%T Leading coefficients of Kazhdan-Lusztig polynomials for Deodhar elements.
%J Journal of Algebraic Combinatorics
%D 2009
%P 229-260
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__29_2_a1/
%G en
%F JAC_2009__29_2_a1
Jones, Brant C. Leading coefficients of Kazhdan-Lusztig polynomials for Deodhar elements.. Journal of Algebraic Combinatorics, Tome 29 (2009) no. 2, pp. 229-260. http://geodesic.mathdoc.fr/item/JAC_2009__29_2_a1/