On a generalization of cyclic semifields
Journal of Algebraic Combinatorics, Tome 29 (2009) no. 1, pp. 1-34.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A new construction is given of cyclic semifields of orders $q ^{2 n }, n$ odd, with kernel (left nucleus) $\mathbb F _{ q $^ n mathbbF_q^n and right and middle nuclei isomorphic to $\mathbb F _{ q $^2 mathbbF_q^2 , and the isotopism classes are determined. Furthermore, this construction is generalized to produce potentially new semifields of the same general type that are not isotopic to cyclic semifields. In particular, a new semifield plane of order $4 ^{5}$ and new semifield planes of order $16 ^{5}$ are constructed by this method.
Keywords: keywords cyclic semifield, net replacement, lifting
@article{JAC_2009__29_1_a5,
     author = {Johnson, Norman L. and Marino, Giuseppe and Polverino, Olga and Trombetti, Rocco},
     title = {On a generalization of cyclic semifields},
     journal = {Journal of Algebraic Combinatorics},
     pages = {1--34},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a5/}
}
TY  - JOUR
AU  - Johnson, Norman L.
AU  - Marino, Giuseppe
AU  - Polverino, Olga
AU  - Trombetti, Rocco
TI  - On a generalization of cyclic semifields
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 1
EP  - 34
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a5/
LA  - en
ID  - JAC_2009__29_1_a5
ER  - 
%0 Journal Article
%A Johnson, Norman L.
%A Marino, Giuseppe
%A Polverino, Olga
%A Trombetti, Rocco
%T On a generalization of cyclic semifields
%J Journal of Algebraic Combinatorics
%D 2009
%P 1-34
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a5/
%G en
%F JAC_2009__29_1_a5
Johnson, Norman L.; Marino, Giuseppe; Polverino, Olga; Trombetti, Rocco. On a generalization of cyclic semifields. Journal of Algebraic Combinatorics, Tome 29 (2009) no. 1, pp. 1-34. http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a5/