Smith normal form and acyclic matrices
Journal of Algebraic Combinatorics, Tome 29 (2009) no. 1, pp. 63-80.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: An approach, based on the Smith Normal Form, is introduced to study the spectra of symmetric matrices with a given graph. The approach serves well to explain how the path cover number (resp. diameter of a tree $T$) is related to the maximal multiplicity $MaxMult( T)$ occurring for an eigenvalue of a symmetric matrix whose graph is $T$ (resp. the minimal number $q( T)$ of distinct eigenvalues over the symmetric matrices whose graphs are $T$). The approach is also applied to a more general class of connected graphs $G$, not necessarily trees, in order to establish a lower bound on $q( G)$.
Keywords: keywords Smith normal form, acyclic matrix, graph spectra
@article{JAC_2009__29_1_a3,
     author = {Kim, In-Jae and Shader, Bryan L.},
     title = {Smith normal form and acyclic matrices},
     journal = {Journal of Algebraic Combinatorics},
     pages = {63--80},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a3/}
}
TY  - JOUR
AU  - Kim, In-Jae
AU  - Shader, Bryan L.
TI  - Smith normal form and acyclic matrices
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 63
EP  - 80
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a3/
LA  - en
ID  - JAC_2009__29_1_a3
ER  - 
%0 Journal Article
%A Kim, In-Jae
%A Shader, Bryan L.
%T Smith normal form and acyclic matrices
%J Journal of Algebraic Combinatorics
%D 2009
%P 63-80
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a3/
%G en
%F JAC_2009__29_1_a3
Kim, In-Jae; Shader, Bryan L. Smith normal form and acyclic matrices. Journal of Algebraic Combinatorics, Tome 29 (2009) no. 1, pp. 63-80. http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a3/