Five-torsion in the homology of the matching complex on 14 vertices
Journal of Algebraic Combinatorics, Tome 29 (2009) no. 1, pp. 81-90.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: J.L. Andersen proved that there is 5-torsion in the bottom nonvanishing homology group of the simplicial complex of graphs of degree at most two on seven vertices. We use this result to demonstrate that there is 5-torsion also in the bottom nonvanishing homology group of the matching complex $M _{14} \mathsf $M_14 on 14 vertices. Combining our observation with results due to Bouc and to Shareshian and Wachs, we conclude that the case $n=14$ is exceptional; for all other $n$, the torsion subgroup of the bottom nonvanishing homology group has exponent three or is zero. The possibility remains that there is other torsion than 3-torsion in higher-degree homology groups of $M _{ n} \mathsf $M_n when $n\geq 13$ and $n\neq 14$.
Keywords: keywords matching complex, simplicial homology, torsion subgroup
@article{JAC_2009__29_1_a2,
     author = {Jonsson, Jakob},
     title = {Five-torsion in the homology of the matching complex on 14 vertices},
     journal = {Journal of Algebraic Combinatorics},
     pages = {81--90},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a2/}
}
TY  - JOUR
AU  - Jonsson, Jakob
TI  - Five-torsion in the homology of the matching complex on 14 vertices
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 81
EP  - 90
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a2/
LA  - en
ID  - JAC_2009__29_1_a2
ER  - 
%0 Journal Article
%A Jonsson, Jakob
%T Five-torsion in the homology of the matching complex on 14 vertices
%J Journal of Algebraic Combinatorics
%D 2009
%P 81-90
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a2/
%G en
%F JAC_2009__29_1_a2
Jonsson, Jakob. Five-torsion in the homology of the matching complex on 14 vertices. Journal of Algebraic Combinatorics, Tome 29 (2009) no. 1, pp. 81-90. http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a2/