Relative $(pn,p,pn,n)$-difference sets with $GCD(p,n)=1$
Journal of Algebraic Combinatorics, Tome 29 (2009) no. 1, pp. 91-106.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $p$ be an odd prime. We first get some non-existence and structural results on $( pn, p, pn, n)$ relative difference sets with $gcd( p, n)=1$ through a group ring approach. We then give a construction of $( p( p+1), p, p( p+1), p+1)$ relative difference sets with $p$ a Mersenne prime.
Keywords: keywords relative difference set, group ring, semi-regular relative difference set
@article{JAC_2009__29_1_a1,
     author = {Feng, Tao},
     title = {Relative $(pn,p,pn,n)$-difference sets with $GCD(p,n)=1$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {91--106},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a1/}
}
TY  - JOUR
AU  - Feng, Tao
TI  - Relative $(pn,p,pn,n)$-difference sets with $GCD(p,n)=1$
JO  - Journal of Algebraic Combinatorics
PY  - 2009
SP  - 91
EP  - 106
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a1/
LA  - en
ID  - JAC_2009__29_1_a1
ER  - 
%0 Journal Article
%A Feng, Tao
%T Relative $(pn,p,pn,n)$-difference sets with $GCD(p,n)=1$
%J Journal of Algebraic Combinatorics
%D 2009
%P 91-106
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a1/
%G en
%F JAC_2009__29_1_a1
Feng, Tao. Relative $(pn,p,pn,n)$-difference sets with $GCD(p,n)=1$. Journal of Algebraic Combinatorics, Tome 29 (2009) no. 1, pp. 91-106. http://geodesic.mathdoc.fr/item/JAC_2009__29_1_a1/