Extended affine Weyl groups of type $A_1$.
Journal of Algebraic Combinatorics, Tome 28 (2008) no. 4, pp. 481-493.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is known that elliptic Weyl groups, extended affine Weyl groups of nullity 2, have a finite presentation called the generalized Coexter presentation. Similar to the finite and affine case this presentation is obtained by assigning a Dynkin diagram to the root system. Then there is a prescription to read the generators and relations from the diagram. Recently a similar presentation is given for simply laced extended affine Weyl groups of nullity 3 and rank>1. Employing a new method, we complete this work by giving a similar presentation for nullity 3 extended affine Weyl groups of type $A _{1}$.
Keywords: keywords Dynkin diagram, Weyl groups, root system
@article{JAC_2008__28_4_a3,
     author = {Azam, Saeid and Shahsanaei, Valiollah},
     title = {Extended affine {Weyl} groups of type $A_1$.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {481--493},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__28_4_a3/}
}
TY  - JOUR
AU  - Azam, Saeid
AU  - Shahsanaei, Valiollah
TI  - Extended affine Weyl groups of type $A_1$.
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 481
EP  - 493
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__28_4_a3/
LA  - en
ID  - JAC_2008__28_4_a3
ER  - 
%0 Journal Article
%A Azam, Saeid
%A Shahsanaei, Valiollah
%T Extended affine Weyl groups of type $A_1$.
%J Journal of Algebraic Combinatorics
%D 2008
%P 481-493
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__28_4_a3/
%G en
%F JAC_2008__28_4_a3
Azam, Saeid; Shahsanaei, Valiollah. Extended affine Weyl groups of type $A_1$.. Journal of Algebraic Combinatorics, Tome 28 (2008) no. 4, pp. 481-493. http://geodesic.mathdoc.fr/item/JAC_2008__28_4_a3/