On Weyl-Heisenberg orbits of equiangular lines
Journal of Algebraic Combinatorics, Tome 28 (2008) no. 3, pp. 333-349.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: An element z Ĩ $\mathbb CP ^{ d -1} \mathbf $z$\in \mathbb $CP^d-1 is called fiducial if gz: g$\in G$ is a set of lines with only one angle between each pair, where $G \cong \Bbb Z _{ d }\times \Bbb Z _{ d }$ is the one-dimensional finite Weyl-Heisenberg group modulo its centre. We give a new characterization of fiducial vectors. Using this characterization, we show that the existence of almost flat fiducial vectors implies the existence of certain cyclic difference sets. We also prove that the construction of fiducial vectors in prime dimensions 7 and 19 due to Appleby (J. Math. Phys. $46(5)$:052107, 2005) does not generalize to other prime dimensions (except for possibly a set with density zero). Finally, we use our new characterization to construct fiducial vectors in dimension 7 and 19 whose coordinates are real.
Keywords: keywords complex equiangular lines, Weyl-Heisenberg group, fiducial vector, SIC-POVM
@article{JAC_2008__28_3_a4,
     author = {Khatirinejad, Mahdad},
     title = {On {Weyl-Heisenberg} orbits of equiangular lines},
     journal = {Journal of Algebraic Combinatorics},
     pages = {333--349},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__28_3_a4/}
}
TY  - JOUR
AU  - Khatirinejad, Mahdad
TI  - On Weyl-Heisenberg orbits of equiangular lines
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 333
EP  - 349
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__28_3_a4/
LA  - en
ID  - JAC_2008__28_3_a4
ER  - 
%0 Journal Article
%A Khatirinejad, Mahdad
%T On Weyl-Heisenberg orbits of equiangular lines
%J Journal of Algebraic Combinatorics
%D 2008
%P 333-349
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__28_3_a4/
%G en
%F JAC_2008__28_3_a4
Khatirinejad, Mahdad. On Weyl-Heisenberg orbits of equiangular lines. Journal of Algebraic Combinatorics, Tome 28 (2008) no. 3, pp. 333-349. http://geodesic.mathdoc.fr/item/JAC_2008__28_3_a4/