Universal families of permutation groups.
Journal of Algebraic Combinatorics, Tome 28 (2008) no. 3, pp. 351-363.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For several families $\Cal F$ of finite transitive permutation groups it is shown that each finite group is isomorphic to a 2-point stabilizer of infinitely many members of $\Cal F$.
Keywords: keywords permutation groups, 2-point stabilizer
@article{JAC_2008__28_3_a3,
     author = {Kantor, William M.},
     title = {Universal families of permutation groups.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {351--363},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__28_3_a3/}
}
TY  - JOUR
AU  - Kantor, William M.
TI  - Universal families of permutation groups.
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 351
EP  - 363
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__28_3_a3/
LA  - en
ID  - JAC_2008__28_3_a3
ER  - 
%0 Journal Article
%A Kantor, William M.
%T Universal families of permutation groups.
%J Journal of Algebraic Combinatorics
%D 2008
%P 351-363
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__28_3_a3/
%G en
%F JAC_2008__28_3_a3
Kantor, William M. Universal families of permutation groups.. Journal of Algebraic Combinatorics, Tome 28 (2008) no. 3, pp. 351-363. http://geodesic.mathdoc.fr/item/JAC_2008__28_3_a3/