Leonard triples and hypercubes
Journal of Algebraic Combinatorics, Tome 28 (2008) no. 3, pp. 397-424.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $V$ denote a vector space over $\Bbb C$ with finite positive dimension. By a Leonard triple on $V$ we mean an ordered triple of linear operators on $V$ such that for each of these operators there exists a basis of $V$ with respect to which the matrix representing that operator is diagonal and the matrices representing the other two operators are irreducible tridiagonal. Let $D$ denote a positive integer and let $Q _{ D }$ denote the graph of the $D$-dimensional hypercube. Let $X$ denote the vertex set of $Q _{ D }$ and let $A$ Ĩ Mat $_{ X}(\mathbb C)$ A$\in {\rm $Mat_X(mathbbC) denote the adjacency matrix of $Q _{ D }$. Fix $x\in X$ and let $A ^{*}$ Ĩ Mat $_{ X}(\mathbb C)$ A^*$\in {\rm $Mat_X(mathbbC) denote the corresponding dual adjacency matrix. Let $T$ denote the subalgebra of Mat $_{ X}(\mathbb C) {\rm $Mat_X(mathbbC) generated by $A, A ^{*}$. We refer to $T$ as the Terwilliger algebra of $Q _{ D }$ with respect to $x$. The matrices $A$ and $A ^{*}$ are related by the fact that 2 i $A= A ^{*} A ^{ \epsilon } - A ^{ \epsilon } A ^{*}$ and 2 i $A ^{*}= A ^{ \epsilon } A - AA ^{ \epsilon }$, where 2 i $A ^{ \epsilon }= AA ^{*} - A ^{*} A$ and i $^{2}$= - 1.
Keywords: keywords leonard triple, distance-regular graph, hypercube, Terwilliger algebra
@article{JAC_2008__28_3_a1,
     author = {Miklavi\v{c}, \v{S}tefko},
     title = {Leonard triples and hypercubes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {397--424},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__28_3_a1/}
}
TY  - JOUR
AU  - Miklavič, Štefko
TI  - Leonard triples and hypercubes
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 397
EP  - 424
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__28_3_a1/
LA  - en
ID  - JAC_2008__28_3_a1
ER  - 
%0 Journal Article
%A Miklavič, Štefko
%T Leonard triples and hypercubes
%J Journal of Algebraic Combinatorics
%D 2008
%P 397-424
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__28_3_a1/
%G en
%F JAC_2008__28_3_a1
Miklavič, Štefko. Leonard triples and hypercubes. Journal of Algebraic Combinatorics, Tome 28 (2008) no. 3, pp. 397-424. http://geodesic.mathdoc.fr/item/JAC_2008__28_3_a1/