Specht filtrations and tensor spaces for the Brauer algebra.
Journal of Algebraic Combinatorics, Tome 28 (2008) no. 2, pp. 281-312.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $m, n\in \Bbb N$. In this paper we study the right permutation action of the symmetric group $\mathfrak S _{2 n}$ mathfrakS_2n on the set of all the Brauer $n$-diagrams. A new basis for the free $\Bbb $Z-module $\mathfrak B _{ n} \mathfrak $B_n spanned by these Brauer $n$-diagrams is constructed, which yields Specht filtrations for $\mathfrak B _{ n} \mathfrak $B_n . For any $2 m$-dimensional vector space $V$ over a field of arbitrary characteristic, we give an explicit and characteristic-free description of the annihilator of the $n$-tensor space $V ^{ \otimes n }$ in the Brauer algebra $\mathfrak B _{ n}( -2 m) \mathfrak $B_n(-2m) . In particular, we show that it is a $\mathfrak S _{2 n}$ mathfrakS_2n -submodule of $\mathfrak B _{ n}( -2 m) \mathfrak $B_n(-2m) .
Keywords: keywords Brauer algebra, symmetric group, tensor space
@article{JAC_2008__28_2_a1,
     author = {Hu, Jun},
     title = {Specht filtrations and tensor spaces for the {Brauer} algebra.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {281--312},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__28_2_a1/}
}
TY  - JOUR
AU  - Hu, Jun
TI  - Specht filtrations and tensor spaces for the Brauer algebra.
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 281
EP  - 312
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__28_2_a1/
LA  - en
ID  - JAC_2008__28_2_a1
ER  - 
%0 Journal Article
%A Hu, Jun
%T Specht filtrations and tensor spaces for the Brauer algebra.
%J Journal of Algebraic Combinatorics
%D 2008
%P 281-312
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__28_2_a1/
%G en
%F JAC_2008__28_2_a1
Hu, Jun. Specht filtrations and tensor spaces for the Brauer algebra.. Journal of Algebraic Combinatorics, Tome 28 (2008) no. 2, pp. 281-312. http://geodesic.mathdoc.fr/item/JAC_2008__28_2_a1/