Coassociative magmatic bialgebras and the Fine numbers.
Journal of Algebraic Combinatorics, Tome 28 (2008) no. 1, pp. 97-114.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove a structure theorem for the connected coassociative magmatic bialgebras. The space of primitive elements is an algebra over an operad called the primitive operad. We prove that the primitive operad is magmatic generated by $n - 2$ operations of arity $n$. The dimension of the space of all the $n$-ary operations of this primitive operad turns out to be the Fine number $F _{ n - 1}$. In short, the triple of operads ( As, Mag, MagFine) is good.
Keywords: keywords bialgebra, generalized bialgebra, Hopf algebra, cartier-Milnor-Moore, Poincaré-Birkhoff-Witt, magmatic, operad, fine number, pre-Lie algebra
@article{JAC_2008__28_1_a6,
     author = {Holtkamp, Ralf and Loday, Jean-Louis and Ronco, Mar{\'\i}a},
     title = {Coassociative magmatic bialgebras and the {Fine} numbers.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {97--114},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a6/}
}
TY  - JOUR
AU  - Holtkamp, Ralf
AU  - Loday, Jean-Louis
AU  - Ronco, María
TI  - Coassociative magmatic bialgebras and the Fine numbers.
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 97
EP  - 114
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a6/
LA  - en
ID  - JAC_2008__28_1_a6
ER  - 
%0 Journal Article
%A Holtkamp, Ralf
%A Loday, Jean-Louis
%A Ronco, María
%T Coassociative magmatic bialgebras and the Fine numbers.
%J Journal of Algebraic Combinatorics
%D 2008
%P 97-114
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a6/
%G en
%F JAC_2008__28_1_a6
Holtkamp, Ralf; Loday, Jean-Louis; Ronco, María. Coassociative magmatic bialgebras and the Fine numbers.. Journal of Algebraic Combinatorics, Tome 28 (2008) no. 1, pp. 97-114. http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a6/