The Hopf algebra of uniform block permutations.
Journal of Algebraic Combinatorics, Tome 28 (2008) no. 1, pp. 115-138.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce the Hopf algebra of uniform block permutations and show that it is self-dual, free, and cofree. These results are closely related to the fact that uniform block permutations form a factorizable inverse monoid. This Hopf algebra contains the Hopf algebra of permutations of Malvenuto and Reutenauer and the Hopf algebra of symmetric functions in non-commuting variables of Gebhard, Rosas, and Sagan. These two embeddings correspond to the factorization of a uniform block permutation as a product of an invertible element and an idempotent one.
Keywords: keywords Hopf algebra, factorizable inverse monoid, uniform block permutation, set partition, symmetric functions, Schur-Weyl duality
@article{JAC_2008__28_1_a5,
     author = {Aguiar, Marcelo and Orellana, Rosa C.},
     title = {The {Hopf} algebra of uniform block permutations.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {115--138},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a5/}
}
TY  - JOUR
AU  - Aguiar, Marcelo
AU  - Orellana, Rosa C.
TI  - The Hopf algebra of uniform block permutations.
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 115
EP  - 138
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a5/
LA  - en
ID  - JAC_2008__28_1_a5
ER  - 
%0 Journal Article
%A Aguiar, Marcelo
%A Orellana, Rosa C.
%T The Hopf algebra of uniform block permutations.
%J Journal of Algebraic Combinatorics
%D 2008
%P 115-138
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a5/
%G en
%F JAC_2008__28_1_a5
Aguiar, Marcelo; Orellana, Rosa C. The Hopf algebra of uniform block permutations.. Journal of Algebraic Combinatorics, Tome 28 (2008) no. 1, pp. 115-138. http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a5/