Lie powers and Witt vectors
Journal of Algebraic Combinatorics, Tome 28 (2008) no. 1, pp. 169-187.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In the study of Lie powers of a module $V$ in prime characteristic $p$, a basic role is played by certain modules $B _{ n }$ introduced by Bryant and Schocker. The isomorphism types of the $B _{ n }$ are not fully understood, but these modules fall into infinite families ${ B _{ k}, B _{ pk}, B _{ p $^2$ k},\dots }$ {B_k,B_pk,B_p^2k,$\dots $} , one family $B( k)$ for each positive integer $k$ not divisible by $p$, and there is a recursive formula for the modules within $B( k)$. Here we use combinatorial methods and Witt vectors to show that each module in $B( k)$ is isomorphic to a direct sum of tensor products of direct summands of the $k$th tensor power $V ^{ \otimes k }$.
Keywords: keywords free Lie algebra, Lie power, tensor power, Witt vector
@article{JAC_2008__28_1_a3,
     author = {Bryant, R.M. and Johnson, Marianne},
     title = {Lie powers and {Witt} vectors},
     journal = {Journal of Algebraic Combinatorics},
     pages = {169--187},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a3/}
}
TY  - JOUR
AU  - Bryant, R.M.
AU  - Johnson, Marianne
TI  - Lie powers and Witt vectors
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 169
EP  - 187
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a3/
LA  - en
ID  - JAC_2008__28_1_a3
ER  - 
%0 Journal Article
%A Bryant, R.M.
%A Johnson, Marianne
%T Lie powers and Witt vectors
%J Journal of Algebraic Combinatorics
%D 2008
%P 169-187
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a3/
%G en
%F JAC_2008__28_1_a3
Bryant, R.M.; Johnson, Marianne. Lie powers and Witt vectors. Journal of Algebraic Combinatorics, Tome 28 (2008) no. 1, pp. 169-187. http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a3/