On fixed points of permutations.
Journal of Algebraic Combinatorics, Tome 28 (2008) no. 1, pp. 189-218.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The number of fixed points of a random permutation of ${1,2,\cdots , n}$ has a limiting Poisson distribution. We seek a generalization, looking at other actions of the symmetric group. Restricting attention to primitive actions, a complete classification of the limiting distributions is given. For most examples, they are trivial - almost every permutation has no fixed points. For the usual action of the symmetric group on $k$-sets of ${1,2,\cdots , n}$, the limit is a polynomial in independent Poisson variables. This exhausts all cases. We obtain asymptotic estimates in some examples, and give a survey of related results.
Keywords: keywords fixed point, derangement, primitive action, o'nan-Scott theorem
@article{JAC_2008__28_1_a2,
     author = {Diaconis, Persi and Fulman, Jason and Guralnick, Robert},
     title = {On fixed points of permutations.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {189--218},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a2/}
}
TY  - JOUR
AU  - Diaconis, Persi
AU  - Fulman, Jason
AU  - Guralnick, Robert
TI  - On fixed points of permutations.
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 189
EP  - 218
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a2/
LA  - en
ID  - JAC_2008__28_1_a2
ER  - 
%0 Journal Article
%A Diaconis, Persi
%A Fulman, Jason
%A Guralnick, Robert
%T On fixed points of permutations.
%J Journal of Algebraic Combinatorics
%D 2008
%P 189-218
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a2/
%G en
%F JAC_2008__28_1_a2
Diaconis, Persi; Fulman, Jason; Guralnick, Robert. On fixed points of permutations.. Journal of Algebraic Combinatorics, Tome 28 (2008) no. 1, pp. 189-218. http://geodesic.mathdoc.fr/item/JAC_2008__28_1_a2/