Degrees of stretched Kostka coefficients
Journal of Algebraic Combinatorics, Tome 27 (2008) no. 3, pp. 263-273.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given a partition $\lambda $ and a composition $\beta $, the stretched Kostka coefficient $K _{ l b}( n) \mathcal $K_$\lambda $beta$(n)$ is the map $n \rightarrowtail K _{ n \lambda , n \beta }$ sending each positive integer $n$ to the Kostka coefficient indexed by $n \lambda $ and $n \beta $. Kirillov and Reshetikhin (J. Soviet Math. $41(2)$, 925-955, 1988) have shown that stretched Kostka coefficients are polynomial functions of $n$. King, Tollu, and Toumazet have conjectured that these polynomials always have nonnegative coefficients (CRM Proc. Lecture Notes 34, 99-112, 2004), and they have given a conjectural expression for their degrees (Séminaire Lotharingien de Combinatoire 54A, 2006). We prove the values conjectured by King, Tollu, and Toumazet for the degrees of stretched Kostka coefficients. Our proof depends upon the polyhedral geometry of Gelfand-Tsetlin polytopes and uses tilings of GT-patterns, a combinatorial structure introduced in De Loera and McAllister, (Discret. Comput. Geom. $32(4)$, 459-470, 2004).
Classification : 17B10, 52B12
Keywords: keywords Kostka coefficient, representation theory, Gelfand-tsetlin polytope
@article{JAC_2008__27_3_a7,
     author = {McAllister, Tyrrell B.},
     title = {Degrees of stretched {Kostka} coefficients},
     journal = {Journal of Algebraic Combinatorics},
     pages = {263--273},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__27_3_a7/}
}
TY  - JOUR
AU  - McAllister, Tyrrell B.
TI  - Degrees of stretched Kostka coefficients
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 263
EP  - 273
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__27_3_a7/
LA  - en
ID  - JAC_2008__27_3_a7
ER  - 
%0 Journal Article
%A McAllister, Tyrrell B.
%T Degrees of stretched Kostka coefficients
%J Journal of Algebraic Combinatorics
%D 2008
%P 263-273
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__27_3_a7/
%G en
%F JAC_2008__27_3_a7
McAllister, Tyrrell B. Degrees of stretched Kostka coefficients. Journal of Algebraic Combinatorics, Tome 27 (2008) no. 3, pp. 263-273. http://geodesic.mathdoc.fr/item/JAC_2008__27_3_a7/