Rees algebras and polyhedral cones of ideals of vertex covers of perfect graphs
Journal of Algebraic Combinatorics, Tome 27 (2008) no. 3, pp. 293-305.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G$ be a perfect graph and let $J$ be its ideal of vertex covers. We show that the Rees algebra of $J$ is normal and that this algebra is Gorenstein if $G$ is unmixed. Then we give a description-in terms of cliques-of the symbolic Rees algebra and the Simis cone of the edge ideal of $G$.
Classification : 13H10, 13F20, 13B22, 52B20
Keywords: keywords perfect graphs, normality, edge ideals, symbolic Rees algebras, standard Gorenstein algebras, max-flow min-cut, clutters, simis cone, Hilbert basis, totally dual integral
@article{JAC_2008__27_3_a5,
     author = {Villarreal, Rafael H.},
     title = {Rees algebras and polyhedral cones of ideals of vertex covers of perfect graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {293--305},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__27_3_a5/}
}
TY  - JOUR
AU  - Villarreal, Rafael H.
TI  - Rees algebras and polyhedral cones of ideals of vertex covers of perfect graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 293
EP  - 305
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__27_3_a5/
LA  - en
ID  - JAC_2008__27_3_a5
ER  - 
%0 Journal Article
%A Villarreal, Rafael H.
%T Rees algebras and polyhedral cones of ideals of vertex covers of perfect graphs
%J Journal of Algebraic Combinatorics
%D 2008
%P 293-305
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__27_3_a5/
%G en
%F JAC_2008__27_3_a5
Villarreal, Rafael H. Rees algebras and polyhedral cones of ideals of vertex covers of perfect graphs. Journal of Algebraic Combinatorics, Tome 27 (2008) no. 3, pp. 293-305. http://geodesic.mathdoc.fr/item/JAC_2008__27_3_a5/