Local properties of Richardson varieties in the Grassmannian via a bounded Robinson-Schensted-Knuth correspondence
Journal of Algebraic Combinatorics, Tome 27 (2008) no. 3, pp. 351-382.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Richardson variety $X _{ \alpha } ^{ \gamma }$ in the Grassmannian is defined to be the intersection of the Schubert variety $X ^{ \gamma }$ and opposite Schubert variety $X _{ \alpha }$. We give an explicit Gröbner basis for the ideal of the tangent cone at any $T$-fixed point of $X _{ \alpha } ^{ \gamma }$, thus generalizing a result of Kodiyalam-Raghavan (J. Algebra $270(1)$:28-54, 2003) and Kreiman-Lakshmibai (Algebra, Arithmetic and Geometry with Applications, 2004). Our proof is based on a generalization of the Robinson-Schensted-Knuth (RSK) correspondence, which we call the bounded RSK (BRSK). We use the Gröbner basis result to deduce a formula which computes the multiplicity of $X _{ \alpha } ^{ \gamma }$ at any $T$-fixed point by counting families of nonintersecting lattice paths, thus generalizing a result first proved by Krattenthaler (Sém. Lothar. Comb. 45:B45c, 2000/2001; J. Algebr. Comb. 22:273-288, 2005).
Keywords: keywords Schubert variety, Grassmannian, multiplicity, Gröbner basis, Robinson-Schensted-knuth correspondence
@article{JAC_2008__27_3_a1,
     author = {Kreiman, Victor},
     title = {Local properties of {Richardson} varieties in the {Grassmannian} via a bounded {Robinson-Schensted-Knuth} correspondence},
     journal = {Journal of Algebraic Combinatorics},
     pages = {351--382},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__27_3_a1/}
}
TY  - JOUR
AU  - Kreiman, Victor
TI  - Local properties of Richardson varieties in the Grassmannian via a bounded Robinson-Schensted-Knuth correspondence
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 351
EP  - 382
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__27_3_a1/
LA  - en
ID  - JAC_2008__27_3_a1
ER  - 
%0 Journal Article
%A Kreiman, Victor
%T Local properties of Richardson varieties in the Grassmannian via a bounded Robinson-Schensted-Knuth correspondence
%J Journal of Algebraic Combinatorics
%D 2008
%P 351-382
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__27_3_a1/
%G en
%F JAC_2008__27_3_a1
Kreiman, Victor. Local properties of Richardson varieties in the Grassmannian via a bounded Robinson-Schensted-Knuth correspondence. Journal of Algebraic Combinatorics, Tome 27 (2008) no. 3, pp. 351-382. http://geodesic.mathdoc.fr/item/JAC_2008__27_3_a1/