Tightening Turyn's bound for Hadamard difference sets
Journal of Algebraic Combinatorics, Tome 27 (2008) no. 2, pp. 187-203.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This work examines the existence of ($4 q ^{2},2 q ^{2} - q, q ^{2} - q$) difference sets, for $q= p ^{ f }$, where $p$ is a prime and $f$ is a positive integer. Suppose that $G$ is a group of order $4 q ^{2}$ which has a normal subgroup $K$ of order $q$ such that $G/ K \cong C _{ q }\times C _{2}\times C _{2}$, where $C _{ q }, C _{2}$ are the cyclic groups of order $q$ and 2 respectively. Under the assumption that $p$ is greater than or equal to 5, this work shows that $G$ does not admit ($4 q ^{2},2 q ^{2} - q, q ^{2} - q$) difference sets.
Keywords: keywords Hadamard difference sets, intersection numbers, characters
@article{JAC_2008__27_2_a3,
     author = {AbuGhneim, Omar A. and Smith, Ken W.},
     title = {Tightening {Turyn's} bound for {Hadamard} difference sets},
     journal = {Journal of Algebraic Combinatorics},
     pages = {187--203},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__27_2_a3/}
}
TY  - JOUR
AU  - AbuGhneim, Omar A.
AU  - Smith, Ken W.
TI  - Tightening Turyn's bound for Hadamard difference sets
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 187
EP  - 203
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__27_2_a3/
LA  - en
ID  - JAC_2008__27_2_a3
ER  - 
%0 Journal Article
%A AbuGhneim, Omar A.
%A Smith, Ken W.
%T Tightening Turyn's bound for Hadamard difference sets
%J Journal of Algebraic Combinatorics
%D 2008
%P 187-203
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__27_2_a3/
%G en
%F JAC_2008__27_2_a3
AbuGhneim, Omar A.; Smith, Ken W. Tightening Turyn's bound for Hadamard difference sets. Journal of Algebraic Combinatorics, Tome 27 (2008) no. 2, pp. 187-203. http://geodesic.mathdoc.fr/item/JAC_2008__27_2_a3/