Coloring complexes and arrangements
Journal of Algebraic Combinatorics, Tome 27 (2008) no. 2, pp. 205-214.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Steingrimsson's coloring complex and Jonsson's unipolar complex are interpreted in terms of hyperplane arrangements. This viewpoint leads to short proofs that all coloring complexes and a large class of unipolar complexes have convex ear decompositions. These convex ear decompositions impose strong new restrictions on the chromatic polynomials of all finite graphs. Similar results are obtained for characteristic polynomials of submatroids of type $\Cal B _{ n }$ arrangements.
Keywords: keywords convex ear decomposition, chromatic polynomial, coloring complex
@article{JAC_2008__27_2_a2,
     author = {Hersh, Patricia and Swartz, Ed},
     title = {Coloring complexes and arrangements},
     journal = {Journal of Algebraic Combinatorics},
     pages = {205--214},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__27_2_a2/}
}
TY  - JOUR
AU  - Hersh, Patricia
AU  - Swartz, Ed
TI  - Coloring complexes and arrangements
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 205
EP  - 214
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__27_2_a2/
LA  - en
ID  - JAC_2008__27_2_a2
ER  - 
%0 Journal Article
%A Hersh, Patricia
%A Swartz, Ed
%T Coloring complexes and arrangements
%J Journal of Algebraic Combinatorics
%D 2008
%P 205-214
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__27_2_a2/
%G en
%F JAC_2008__27_2_a2
Hersh, Patricia; Swartz, Ed. Coloring complexes and arrangements. Journal of Algebraic Combinatorics, Tome 27 (2008) no. 2, pp. 205-214. http://geodesic.mathdoc.fr/item/JAC_2008__27_2_a2/