Equivalence classes in the Weyl groups of type $B_n$.
Journal of Algebraic Combinatorics, Tome 27 (2008) no. 2, pp. 247-262.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider two families of equivalence classes in the Weyl groups of type $B _{ n }$ which are suggested by the study of left cells in unequal parameter Iwahori-Hecke algebras. Both families are indexed by a non-negative integer $r$. It has been shown that the first family coincides with left cells corresponding to the equal parameter Iwahori-Hecke algebra when $r=0$; the equivalence classes in the second family agree with left cells corresponding to a special class of choices of unequal parameters when $r$ is sufficiently large. Our main result shows that the two families of equivalence classes coincide, suggesting the structure of left cells for remaining choices of the Iwahori-Hecke algebra parameters.
Classification : 20C08, 05E10
Keywords: keywords unequal parameter iwahori-Hecke algebra, domino tableaux, Robinson-Schensted algorithm
@article{JAC_2008__27_2_a0,
     author = {Pietraho, Thomas},
     title = {Equivalence classes in the {Weyl} groups of type $B_n$.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {247--262},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__27_2_a0/}
}
TY  - JOUR
AU  - Pietraho, Thomas
TI  - Equivalence classes in the Weyl groups of type $B_n$.
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 247
EP  - 262
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__27_2_a0/
LA  - en
ID  - JAC_2008__27_2_a0
ER  - 
%0 Journal Article
%A Pietraho, Thomas
%T Equivalence classes in the Weyl groups of type $B_n$.
%J Journal of Algebraic Combinatorics
%D 2008
%P 247-262
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__27_2_a0/
%G en
%F JAC_2008__27_2_a0
Pietraho, Thomas. Equivalence classes in the Weyl groups of type $B_n$.. Journal of Algebraic Combinatorics, Tome 27 (2008) no. 2, pp. 247-262. http://geodesic.mathdoc.fr/item/JAC_2008__27_2_a0/