Triangle-free distance-regular graphs
Journal of Algebraic Combinatorics, Tome 27 (2008) no. 1, pp. 23-34.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\Gamma $ denote a distance-regular graph with diameter $d\geq 3$. By a parallelogram of length 3, we mean a 4-tuple $xyzw$ consisting of vertices of $\Gamma $ such that $\partial ( x, y)= \partial ( z, w)=1, \partial ( x, z)=3$, and $\partial ( x, w)= \partial ( y, w)= \partial ( y, z)=2$, where $\partial $ denotes the path-length distance function. Assume that $\Gamma $ has intersection numbers $a _{1}=0$ and $a _{2}\neq 0$. We prove that the following (i) and (ii) are equivalent. (i) $\Gamma $ is $Q$-polynomial and contains no parallelograms of length 3; (ii) $\Gamma $ has classical parameters $( d, b, \alpha , \beta )$ with $b - 1$. Furthermore, suppose that (i) and (ii) hold. We show that each of $b( b+1) ^{2}( b+2)/ c _{2}, ( b - 2)( b - 1) b( b+1)$/(2+$2 b - c _{2}$) is an integer and that $c _{2}\leq b( b+1)$. This upper bound for $c _{2}$ is optimal, since the Hermitian forms graph Her $_{2}( d)$ is a triangle-free distance-regular graph that satisfies $c _{2}= b( b+1)$.
Keywords: keywords distance-regular graph, $Q$-polynomial, classical parameters
@article{JAC_2008__27_1_a4,
     author = {Pan, Yeh-jong and Lu, Min-hsin and Weng, Chih-wen},
     title = {Triangle-free distance-regular graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {23--34},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__27_1_a4/}
}
TY  - JOUR
AU  - Pan, Yeh-jong
AU  - Lu, Min-hsin
AU  - Weng, Chih-wen
TI  - Triangle-free distance-regular graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 23
EP  - 34
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__27_1_a4/
LA  - en
ID  - JAC_2008__27_1_a4
ER  - 
%0 Journal Article
%A Pan, Yeh-jong
%A Lu, Min-hsin
%A Weng, Chih-wen
%T Triangle-free distance-regular graphs
%J Journal of Algebraic Combinatorics
%D 2008
%P 23-34
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__27_1_a4/
%G en
%F JAC_2008__27_1_a4
Pan, Yeh-jong; Lu, Min-hsin; Weng, Chih-wen. Triangle-free distance-regular graphs. Journal of Algebraic Combinatorics, Tome 27 (2008) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/JAC_2008__27_1_a4/