Parabolic conjugacy in general linear groups.
Journal of Algebraic Combinatorics, Tome 27 (2008) no. 1, pp. 99-111.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $q$ be a power of a prime and $n$ a positive integer. Let $P( q)$ be a parabolic subgroup of the finite general linear group GL $_{ n }( q)$. We show that the number of $P( q)$-conjugacy classes in GL $_{ n }( q)$ is, as a function of $q$, a polynomial in $q$ with integer coefficients. This answers a question of Alperin in (Commun. Algebra $34(3)$: 889-891, 2006)
Keywords: keywords general linear group, parabolic subgroups, conjugacy classes
@article{JAC_2008__27_1_a1,
     author = {Goodwin, Simon M. and R\"ohrle, Gerhard},
     title = {Parabolic conjugacy in general linear groups.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {99--111},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2008__27_1_a1/}
}
TY  - JOUR
AU  - Goodwin, Simon M.
AU  - Röhrle, Gerhard
TI  - Parabolic conjugacy in general linear groups.
JO  - Journal of Algebraic Combinatorics
PY  - 2008
SP  - 99
EP  - 111
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2008__27_1_a1/
LA  - en
ID  - JAC_2008__27_1_a1
ER  - 
%0 Journal Article
%A Goodwin, Simon M.
%A Röhrle, Gerhard
%T Parabolic conjugacy in general linear groups.
%J Journal of Algebraic Combinatorics
%D 2008
%P 99-111
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2008__27_1_a1/
%G en
%F JAC_2008__27_1_a1
Goodwin, Simon M.; Röhrle, Gerhard. Parabolic conjugacy in general linear groups.. Journal of Algebraic Combinatorics, Tome 27 (2008) no. 1, pp. 99-111. http://geodesic.mathdoc.fr/item/JAC_2008__27_1_a1/