Nested set complexes of Dowling lattices and complexes of Dowling trees
Journal of Algebraic Combinatorics, Tome 26 (2007) no. 4, pp. 477-494.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given a finite group $G$ and a natural number $n$, we study the structure of the complex of nested sets of the associated Dowling lattice $Q _{ n}( G) \mathcal $Q_n$(G)$ (Proc. Internat. Sympos., 1971, pp. 101-115) and of its subposet of the $G$-symmetric partitions $Q _{ n} ^{0}( G) \mathcal $Q_n^0$(G)$ which was recently introduced by Hultman ( http://www.math.kth.se/ hultman/, 2006), together with the complex of $G$-symmetric phylogenetic trees $T _{ n} ^{ G} \mathcal $T_n^G . Hultman shows that the complexes $T _{ n} ^{ G} \mathcal $T_n^G and [$( D)$tilde]$( Q _{ n} ^{0}( G)) \widetilde {\Delta }(\mathcal $Q_n^0$(G))$ are homotopy equivalent and Cohen-Macaulay, and determines the rank of their top homology. An application of the theory of building sets and nested set complexes by Feichtner and Kozlov ( Selecta Math. (N.S.) 10, 37-60, 2004) shows that in fact $T _{ n} ^{ G} \mathcal $T_n^G is subdivided by the order complex of $Q _{ n} ^{0}( G) \mathcal $Q_n^0$(G)$ . We introduce the complex of Dowling trees $T _{ n}( G) \mathcal $T_n$(G)$ and prove that it is subdivided by the order complex of $Q _{ n}( G) \mathcal $Q_n$(G)$ . Application of a theorem of Feichtner and Sturmfels ( Port. Math. (N.S.) 62, 437-468, 2005) shows that, as a simplicial complex, $T _{ n}( G) \mathcal $T_n$(G)$ is in fact isomorphic to the Bergman complex of the associated Dowling geometry.
Keywords: keywords posets, lattices, combinatorial blowups, building sets, nested sets, dowling lattices, complexes of trees, phylogenetic trees
@article{JAC_2007__26_4_a3,
     author = {Delucchi, Emanuele},
     title = {Nested set complexes of {Dowling} lattices and complexes of {Dowling} trees},
     journal = {Journal of Algebraic Combinatorics},
     pages = {477--494},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2007__26_4_a3/}
}
TY  - JOUR
AU  - Delucchi, Emanuele
TI  - Nested set complexes of Dowling lattices and complexes of Dowling trees
JO  - Journal of Algebraic Combinatorics
PY  - 2007
SP  - 477
EP  - 494
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2007__26_4_a3/
LA  - en
ID  - JAC_2007__26_4_a3
ER  - 
%0 Journal Article
%A Delucchi, Emanuele
%T Nested set complexes of Dowling lattices and complexes of Dowling trees
%J Journal of Algebraic Combinatorics
%D 2007
%P 477-494
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2007__26_4_a3/
%G en
%F JAC_2007__26_4_a3
Delucchi, Emanuele. Nested set complexes of Dowling lattices and complexes of Dowling trees. Journal of Algebraic Combinatorics, Tome 26 (2007) no. 4, pp. 477-494. http://geodesic.mathdoc.fr/item/JAC_2007__26_4_a3/